Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
Sci Total Environ ; 890: 164289, 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: covidwho-2326226

RESUMEN

Molecular methods have been used to detect human pathogens in wastewater with sampling typically performed at wastewater treatment plants (WWTP) and upstream locations within the sewer system. A wastewater-based surveillance (WBS) program was established at the University of Miami (UM) in 2020, which included measurements of SARS-CoV-2 levels in wastewater from its hospital and within the regional WWTP. In addition to the development of a SARS-CoV-2 quantitative PCR (qPCR) assay, qPCR assays to detect other human pathogens of interest were also developed at UM. Here we report on the use of a modified set of reagents published by the CDC to detect nucleic acids of Monkeypox virus (MPXV) which emerged during May of 2022 to become a concern worldwide. Samples collected from the University hospital and from the regional WWTP were processed through DNA and RNA workflows and analyzed by qPCR to detect a segment of the MPXV CrmB gene. Results show positive detections of MPXV nucleic acids in the hospital and wastewater treatment plant wastewater which coincided with clinical cases in the community and mirrored the overall trend of nationwide MPXV cases reported to the CDC. We recommend the expansion of current WBS programs' methods to detect a broader range of pathogens of concern in wastewater and present evidence that viral RNA in human cells infected by a DNA virus can be detected in wastewater.


Asunto(s)
COVID-19 , Mpox , Ácidos Nucleicos , Humanos , Monkeypox virus , Aguas Residuales , Flujo de Trabajo , SARS-CoV-2 , ADN , Hospitales Universitarios , ARN Viral
2.
Sci Total Environ ; 857(Pt 1): 159188, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: covidwho-2121792

RESUMEN

Genomic footprints of pathogens shed by infected individuals can be traced in environmental samples, which can serve as a noninvasive method of infectious disease surveillance. The research evaluates the efficacy of environmental monitoring of SARS-CoV-2 RNA in air, surface swabs and wastewater to predict COVID-19 cases. Using a prospective experimental design, air, surface swabs, and wastewater samples were collected from a college dormitory housing roughly 500 students from March to May 2021 at the University of Miami, Coral Gables, FL. Students were randomly screened for COVID-19 during the study period. SARS-CoV-2 concentration in environmental samples was quantified using Volcano 2nd Generation-qPCR. Descriptive analyses were conducted to examine the associations between time-lagged SARS-CoV-2 in environmental samples and COVID-19 cases. SARS-CoV-2 was detected in air, surface swab and wastewater samples on 52 (63.4 %), 40 (50.0 %) and 57 (68.6 %) days, respectively. On 19 (24 %) of 78 days SARS-CoV-2 was detected in all three sample types. COVID-19 cases were reported on 11 days during the study period and SARS-CoV-2 was also detected two days before the case diagnosis on all 11 (100 %), 9 (81.8 %) and 8 (72.7 %) days in air, surface swab and wastewater samples, respectively. SARS-CoV-2 detection in environmental samples was an indicator of the presence of local COVID-19 cases and a 3-day lead indicator for a potential outbreak at the dormitory building scale. Proactive environmental surveillance of SARS-CoV-2 or other pathogens in multiple environmental media has potential to guide targeted measures to contain and/or mitigate infectious disease outbreaks within communities.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Aguas Residuales/análisis , ARN Viral , Estudios Prospectivos
3.
The Science of the total environment ; 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-2046777

RESUMEN

Genomic footprints of pathogens shed by infected individuals can be traced in environmental samples, which can serve as a noninvasive method of infectious disease surveillance. The research evaluates the efficacy of environmental monitoring of SARS-CoV-2 RNA in air, surface swabs and wastewater to predict COVID-19 cases. Using a prospective experimental design, air, surface swabs, and wastewater samples were collected from a college dormitory housing roughly 500 students from March to May 2021 at the University of Miami, Coral Gables, FL. Students were randomly screened for COVID-19 during the study period. SARS-CoV-2 concentration in environmental samples was quantified using Volcano 2nd Generation-qPCR. Descriptive analyses were conducted to examine the associations between time-lagged SARS-CoV-2 in environmental samples and COVID-19 cases. SARS-CoV-2 was detected in air, surface swab and wastewater samples on 52 (63.4 %), 40 (50.0 %) and 57 (68.6 %) days, respectively. On 19 (24 %) of 78 days SARS-CoV-2 was detected in all three sample types. COVID-19 cases were reported on 11 days during the study period and SARS-CoV-2 was also detected two days before the case diagnosis on all 11 (100 %), 9 (81.8 %) and 8 (72.7 %) days in air, surface swab and wastewater samples, respectively. SARS-CoV-2 detection in environmental samples was an indicator of the presence of local COVID-19 cases and a 3-day lead indicator for a potential outbreak at the dormitory building scale. Proactive environmental surveillance of SARS-CoV-2 or other pathogens in multiple environmental media has potential to guide targeted measures to contain and/or mitigate infectious disease outbreaks within communities. Graphical Unlabelled Image

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA